Gitee AI
README.md88.16 kB
一键复制
元数据

tags:
- mteb
- sentence-transfomres
- transformers
model-index:
- name: bge-large-en
  results:
  - task:
      type: Classification
    dataset:
      type: mteb/amazon_counterfactual
      name: MTEB AmazonCounterfactualClassification (en)
      config: en
      split: test
      revision: e8379541af4e31359cca9fbcf4b00f2671dba205
    metrics:
    - type: accuracy
      value: 76.94029850746269
    - type: ap
      value: 40.00228964744091
    - type: f1
      value: 70.86088267934595
  - task:
      type: Classification
    dataset:
      type: mteb/amazon_polarity
      name: MTEB AmazonPolarityClassification
      config: default
      split: test
      revision: e2d317d38cd51312af73b3d32a06d1a08b442046
    metrics:
    - type: accuracy
      value: 91.93745
    - type: ap
      value: 88.24758534667426
    - type: f1
      value: 91.91033034217591
  - task:
      type: Classification
    dataset:
      type: mteb/amazon_reviews_multi
      name: MTEB AmazonReviewsClassification (en)
      config: en
      split: test
      revision: 1399c76144fd37290681b995c656ef9b2e06e26d
    metrics:
    - type: accuracy
      value: 46.158
    - type: f1
      value: 45.78935185074774
  - task:
      type: Retrieval
    dataset:
      type: arguana
      name: MTEB ArguAna
      config: default
      split: test
      revision: None
    metrics:
    - type: map_at_1
      value: 39.972
    - type: map_at_10
      value: 54.874
    - type: map_at_100
      value: 55.53399999999999
    - type: map_at_1000
      value: 55.539
    - type: map_at_3
      value: 51.031000000000006
    - type: map_at_5
      value: 53.342999999999996
    - type: mrr_at_1
      value: 40.541
    - type: mrr_at_10
      value: 55.096000000000004
    - type: mrr_at_100
      value: 55.75599999999999
    - type: mrr_at_1000
      value: 55.761
    - type: mrr_at_3
      value: 51.221000000000004
    - type: mrr_at_5
      value: 53.568000000000005
    - type: ndcg_at_1
      value: 39.972
    - type: ndcg_at_10
      value: 62.456999999999994
    - type: ndcg_at_100
      value: 65.262
    - type: ndcg_at_1000
      value: 65.389
    - type: ndcg_at_3
      value: 54.673
    - type: ndcg_at_5
      value: 58.80499999999999
    - type: precision_at_1
      value: 39.972
    - type: precision_at_10
      value: 8.634
    - type: precision_at_100
      value: 0.9860000000000001
    - type: precision_at_1000
      value: 0.1
    - type: precision_at_3
      value: 21.740000000000002
    - type: precision_at_5
      value: 15.036
    - type: recall_at_1
      value: 39.972
    - type: recall_at_10
      value: 86.344
    - type: recall_at_100
      value: 98.578
    - type: recall_at_1000
      value: 99.57300000000001
    - type: recall_at_3
      value: 65.22
    - type: recall_at_5
      value: 75.178
  - task:
      type: Clustering
    dataset:
      type: mteb/arxiv-clustering-p2p
      name: MTEB ArxivClusteringP2P
      config: default
      split: test
      revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
    metrics:
    - type: v_measure
      value: 48.94652870403906
  - task:
      type: Clustering
    dataset:
      type: mteb/arxiv-clustering-s2s
      name: MTEB ArxivClusteringS2S
      config: default
      split: test
      revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
    metrics:
    - type: v_measure
      value: 43.17257160340209
  - task:
      type: Reranking
    dataset:
      type: mteb/askubuntudupquestions-reranking
      name: MTEB AskUbuntuDupQuestions
      config: default
      split: test
      revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
    metrics:
    - type: map
      value: 63.97867370559182
    - type: mrr
      value: 77.00820032537484
  - task:
      type: STS
    dataset:
      type: mteb/biosses-sts
      name: MTEB BIOSSES
      config: default
      split: test
      revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
    metrics:
    - type: cos_sim_pearson
      value: 80.00986015960616
    - type: cos_sim_spearman
      value: 80.36387933827882
    - type: euclidean_pearson
      value: 80.32305287257296
    - type: euclidean_spearman
      value: 82.0524720308763
    - type: manhattan_pearson
      value: 80.19847473906454
    - type: manhattan_spearman
      value: 81.87957652506985
  - task:
      type: Classification
    dataset:
      type: mteb/banking77
      name: MTEB Banking77Classification
      config: default
      split: test
      revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
    metrics:
    - type: accuracy
      value: 88.00000000000001
    - type: f1
      value: 87.99039027511853
  - task:
      type: Clustering
    dataset:
      type: mteb/biorxiv-clustering-p2p
      name: MTEB BiorxivClusteringP2P
      config: default
      split: test
      revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
    metrics:
    - type: v_measure
      value: 41.36932844640705
  - task:
      type: Clustering
    dataset:
      type: mteb/biorxiv-clustering-s2s
      name: MTEB BiorxivClusteringS2S
      config: default
      split: test
      revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
    metrics:
    - type: v_measure
      value: 38.34983239611985
  - task:
      type: Retrieval
    dataset:
      type: BeIR/cqadupstack
      name: MTEB CQADupstackAndroidRetrieval
      config: default
      split: test
      revision: None
    metrics:
    - type: map_at_1
      value: 32.257999999999996
    - type: map_at_10
      value: 42.937
    - type: map_at_100
      value: 44.406
    - type: map_at_1000
      value: 44.536
    - type: map_at_3
      value: 39.22
    - type: map_at_5
      value: 41.458
    - type: mrr_at_1
      value: 38.769999999999996
    - type: mrr_at_10
      value: 48.701
    - type: mrr_at_100
      value: 49.431000000000004
    - type: mrr_at_1000
      value: 49.476
    - type: mrr_at_3
      value: 45.875
    - type: mrr_at_5
      value: 47.67
    - type: ndcg_at_1
      value: 38.769999999999996
    - type: ndcg_at_10
      value: 49.35
    - type: ndcg_at_100
      value: 54.618
    - type: ndcg_at_1000
      value: 56.655
    - type: ndcg_at_3
      value: 43.826
    - type: ndcg_at_5
      value: 46.72
    - type: precision_at_1
      value: 38.769999999999996
    - type: precision_at_10
      value: 9.328
    - type: precision_at_100
      value: 1.484
    - type: precision_at_1000
      value: 0.196
    - type: precision_at_3
      value: 20.649
    - type: precision_at_5
      value: 15.25
    - type: recall_at_1
      value: 32.257999999999996
    - type: recall_at_10
      value: 61.849
    - type: recall_at_100
      value: 83.70400000000001
    - type: recall_at_1000
      value: 96.344
    - type: recall_at_3
      value: 46.037
    - type: recall_at_5
      value: 53.724000000000004
  - task:
      type: Retrieval
    dataset:
      type: BeIR/cqadupstack
      name: MTEB CQADupstackEnglishRetrieval
      config: default
      split: test
      revision: None
    metrics:
    - type: map_at_1
      value: 32.979
    - type: map_at_10
      value: 43.376999999999995
    - type: map_at_100
      value: 44.667
    - type: map_at_1000
      value: 44.794
    - type: map_at_3
      value: 40.461999999999996
    - type: map_at_5
      value: 42.138
    - type: mrr_at_1
      value: 41.146
    - type: mrr_at_10
      value: 49.575
    - type: mrr_at_100
      value: 50.187000000000005
    - type: mrr_at_1000
      value: 50.231
    - type: mrr_at_3
      value: 47.601
    - type: mrr_at_5
      value: 48.786
    - type: ndcg_at_1
      value: 41.146
    - type: ndcg_at_10
      value: 48.957
    - type: ndcg_at_100
      value: 53.296
    - type: ndcg_at_1000
      value: 55.254000000000005
    - type: ndcg_at_3
      value: 45.235
    - type: ndcg_at_5
      value: 47.014
    - type: precision_at_1
      value: 41.146
    - type: precision_at_10
      value: 9.107999999999999
    - type: precision_at_100
      value: 1.481
    - type: precision_at_1000
      value: 0.193
    - type: precision_at_3
      value: 21.783
    - type: precision_at_5
      value: 15.274
    - type: recall_at_1
      value: 32.979
    - type: recall_at_10
      value: 58.167
    - type: recall_at_100
      value: 76.374
    - type: recall_at_1000
      value: 88.836
    - type: recall_at_3
      value: 46.838
    - type: recall_at_5
      value: 52.006
  - task:
      type: Retrieval
    dataset:
      type: BeIR/cqadupstack
      name: MTEB CQADupstackGamingRetrieval
      config: default
      split: test
      revision: None
    metrics:
    - type: map_at_1
      value: 40.326
    - type: map_at_10
      value: 53.468
    - type: map_at_100
      value: 54.454
    - type: map_at_1000
      value: 54.508
    - type: map_at_3
      value: 50.12799999999999
    - type: map_at_5
      value: 51.991
    - type: mrr_at_1
      value: 46.394999999999996
    - type: mrr_at_10
      value: 57.016999999999996
    - type: mrr_at_100
      value: 57.67099999999999
    - type: mrr_at_1000
      value: 57.699999999999996
    - type: mrr_at_3
      value: 54.65
    - type: mrr_at_5
      value: 56.101
    - type: ndcg_at_1
      value: 46.394999999999996
    - type: ndcg_at_10
      value: 59.507
    - type: ndcg_at_100
      value: 63.31099999999999
    - type: ndcg_at_1000
      value: 64.388
    - type: ndcg_at_3
      value: 54.04600000000001
    - type: ndcg_at_5
      value: 56.723
    - type: precision_at_1
      value: 46.394999999999996
    - type: precision_at_10
      value: 9.567
    - type: precision_at_100
      value: 1.234
    - type: precision_at_1000
      value: 0.13699999999999998
    - type: precision_at_3
      value: 24.117
    - type: precision_at_5
      value: 16.426
    - type: recall_at_1
      value: 40.326
    - type: recall_at_10
      value: 73.763
    - type: recall_at_100
      value: 89.927
    - type: recall_at_1000
      value: 97.509
    - type: recall_at_3
      value: 59.34
    - type: recall_at_5
      value: 65.915
  - task:
      type: Retrieval
    dataset:
      type: BeIR/cqadupstack
      name: MTEB CQADupstackGisRetrieval
      config: default
      split: test
      revision: None
    metrics:
    - type: map_at_1
      value: 26.661
    - type: map_at_10
      value: 35.522
    - type: map_at_100
      value: 36.619
    - type: map_at_1000
      value: 36.693999999999996
    - type: map_at_3
      value: 33.154
    - type: map_at_5
      value: 34.353
    - type: mrr_at_1
      value: 28.362
    - type: mrr_at_10
      value: 37.403999999999996
    - type: mrr_at_100
      value: 38.374
    - type: mrr_at_1000
      value: 38.428000000000004
    - type: mrr_at_3
      value: 35.235
    - type: mrr_at_5
      value: 36.269
    - type: ndcg_at_1
      value: 28.362
    - type: ndcg_at_10
      value: 40.431
    - type: ndcg_at_100
      value: 45.745999999999995
    - type: ndcg_at_1000
      value: 47.493
    - type: ndcg_at_3
      value: 35.733
    - type: ndcg_at_5
      value: 37.722
    - type: precision_at_1
      value: 28.362
    - type: precision_at_10
      value: 6.101999999999999
    - type: precision_at_100
      value: 0.922
    - type: precision_at_1000
      value: 0.11100000000000002
    - type: precision_at_3
      value: 15.140999999999998
    - type: precision_at_5
      value: 10.305
    - type: recall_at_1
      value: 26.661
    - type: recall_at_10
      value: 53.675
    - type: recall_at_100
      value: 77.891
    - type: recall_at_1000
      value: 90.72
    - type: recall_at_3
      value: 40.751
    - type: recall_at_5
      value: 45.517
  - task:
      type: Retrieval
    dataset:
      type: BeIR/cqadupstack
      name: MTEB CQADupstackMathematicaRetrieval
      config: default
      split: test
      revision: None
    metrics:
    - type: map_at_1
      value: 18.886
    - type: map_at_10
      value: 27.288
    - type: map_at_100
      value: 28.327999999999996
    - type: map_at_1000
      value: 28.438999999999997
    - type: map_at_3
      value: 24.453
    - type: map_at_5
      value: 25.959
    - type: mrr_at_1
      value: 23.134
    - type: mrr_at_10
      value: 32.004
    - type: mrr_at_100
      value: 32.789
    - type: mrr_at_1000
      value: 32.857
    - type: mrr_at_3
      value: 29.084
    - type: mrr_at_5
      value: 30.614
    - type: ndcg_at_1
      value: 23.134
    - type: ndcg_at_10
      value: 32.852
    - type: ndcg_at_100
      value: 37.972
    - type: ndcg_at_1000
      value: 40.656
    - type: ndcg_at_3
      value: 27.435
    - type: ndcg_at_5
      value: 29.823
    - type: precision_at_1
      value: 23.134
    - type: precision_at_10
      value: 6.032
    - type: precision_at_100
      value: 0.9950000000000001
    - type: precision_at_1000
      value: 0.136
    - type: precision_at_3
      value: 13.017999999999999
    - type: precision_at_5
      value: 9.501999999999999
    - type: recall_at_1
      value: 18.886
    - type: recall_at_10
      value: 45.34
    - type: recall_at_100
      value: 67.947
    - type: recall_at_1000
      value: 86.924
    - type: recall_at_3
      value: 30.535
    - type: recall_at_5
      value: 36.451
  - task:
      type: Retrieval
    dataset:
      type: BeIR/cqadupstack
      name: MTEB CQADupstackPhysicsRetrieval
      config: default
      split: test
      revision: None
    metrics:
    - type: map_at_1
      value: 28.994999999999997
    - type: map_at_10
      value: 40.04
    - type: map_at_100
      value: 41.435
    - type: map_at_1000
      value: 41.537
    - type: map_at_3
      value: 37.091
    - type: map_at_5
      value: 38.802
    - type: mrr_at_1
      value: 35.034
    - type: mrr_at_10
      value: 45.411
    - type: mrr_at_100
      value: 46.226
    - type: mrr_at_1000
      value: 46.27
    - type: mrr_at_3
      value: 43.086
    - type: mrr_at_5
      value: 44.452999999999996
    - type: ndcg_at_1
      value: 35.034
    - type: ndcg_at_10
      value: 46.076
    - type: ndcg_at_100
      value: 51.483000000000004
    - type: ndcg_at_1000
      value: 53.433
    - type: ndcg_at_3
      value: 41.304
    - type: ndcg_at_5
      value: 43.641999999999996
    - type: precision_at_1
      value: 35.034
    - type: precision_at_10
      value: 8.258000000000001
    - type: precision_at_100
      value: 1.268
    - type: precision_at_1000
      value: 0.161
    - type: precision_at_3
      value: 19.57
    - type: precision_at_5
      value: 13.782
    - type: recall_at_1
      value: 28.994999999999997
    - type: recall_at_10
      value: 58.538000000000004
    - type: recall_at_100
      value: 80.72399999999999
    - type: recall_at_1000
      value: 93.462
    - type: recall_at_3
      value: 45.199
    - type: recall_at_5
      value: 51.237
  - task:
      type: Retrieval
    dataset:
      type: BeIR/cqadupstack
      name: MTEB CQADupstackProgrammersRetrieval
      config: default
      split: test
      revision: None
    metrics:
    - type: map_at_1
      value: 24.795
    - type: map_at_10
      value: 34.935
    - type: map_at_100
      value: 36.306
    - type: map_at_1000
      value: 36.417
    - type: map_at_3
      value: 31.831
    - type: map_at_5
      value: 33.626
    - type: mrr_at_1
      value: 30.479
    - type: mrr_at_10
      value: 40.225
    - type: mrr_at_100
      value: 41.055
    - type: mrr_at_1000
      value: 41.114
    - type: mrr_at_3
      value: 37.538
    - type: mrr_at_5
      value: 39.073
    - type: ndcg_at_1
      value: 30.479
    - type: ndcg_at_10
      value: 40.949999999999996
    - type: ndcg_at_100
      value: 46.525
    - type: ndcg_at_1000
      value: 48.892
    - type: ndcg_at_3
      value: 35.79
    - type: ndcg_at_5
      value: 38.237
    - type: precision_at_1
      value: 30.479
    - type: precision_at_10
      value: 7.6259999999999994
    - type: precision_at_100
      value: 1.203
    - type: precision_at_1000
      value: 0.157
    - type: precision_at_3
      value: 17.199
    - type: precision_at_5
      value: 12.466000000000001
    - type: recall_at_1
      value: 24.795
    - type: recall_at_10
      value: 53.421
    - type: recall_at_100
      value: 77.189
    - type: recall_at_1000
      value: 93.407
    - type: recall_at_3
      value: 39.051
    - type: recall_at_5
      value: 45.462
  - task:
      type: Retrieval
    dataset:
      type: BeIR/cqadupstack
      name: MTEB CQADupstackRetrieval
      config: default
      split: test
      revision: None
    metrics:
    - type: map_at_1
      value: 26.853499999999997
    - type: map_at_10
      value: 36.20433333333333
    - type: map_at_100
      value: 37.40391666666667
    - type: map_at_1000
      value: 37.515
    - type: map_at_3
      value: 33.39975
    - type: map_at_5
      value: 34.9665
    - type: mrr_at_1
      value: 31.62666666666667
    - type: mrr_at_10
      value: 40.436749999999996
    - type: mrr_at_100
      value: 41.260333333333335
    - type: mrr_at_1000
      value: 41.31525
    - type: mrr_at_3
      value: 38.06733333333332
    - type: mrr_at_5
      value: 39.41541666666667
    - type: ndcg_at_1
      value: 31.62666666666667
    - type: ndcg_at_10
      value: 41.63341666666667
    - type: ndcg_at_100
      value: 46.704166666666666
    - type: ndcg_at_1000
      value: 48.88483333333335
    - type: ndcg_at_3
      value: 36.896
    - type: ndcg_at_5
      value: 39.11891666666667
    - type: precision_at_1
      value: 31.62666666666667
    - type: precision_at_10
      value: 7.241083333333333
    - type: precision_at_100
      value: 1.1488333333333334
    - type: precision_at_1000
      value: 0.15250000000000002
    - type: precision_at_3
      value: 16.908333333333335
    - type: precision_at_5
      value: 11.942833333333333
    - type: recall_at_1
      value: 26.853499999999997
    - type: recall_at_10
      value: 53.461333333333336
    - type: recall_at_100
      value: 75.63633333333333
    - type: recall_at_1000
      value: 90.67016666666666
    - type: recall_at_3
      value: 40.24241666666667
    - type: recall_at_5
      value: 45.98608333333333
  - task:
      type: Retrieval
    dataset:
      type: BeIR/cqadupstack
      name: MTEB CQADupstackStatsRetrieval
      config: default
      split: test
      revision: None
    metrics:
    - type: map_at_1
      value: 25.241999999999997
    - type: map_at_10
      value: 31.863999999999997
    - type: map_at_100
      value: 32.835
    - type: map_at_1000
      value: 32.928000000000004
    - type: map_at_3
      value: 29.694
    - type: map_at_5
      value: 30.978
    - type: mrr_at_1
      value: 28.374
    - type: mrr_at_10
      value: 34.814
    - type: mrr_at_100
      value: 35.596
    - type: mrr_at_1000
      value: 35.666
    - type: mrr_at_3
      value: 32.745000000000005
    - type: mrr_at_5
      value: 34.049
    - type: ndcg_at_1
      value: 28.374
    - type: ndcg_at_10
      value: 35.969
    - type: ndcg_at_100
      value: 40.708
    - type: ndcg_at_1000
      value: 43.08
    - type: ndcg_at_3
      value: 31.968999999999998
    - type: ndcg_at_5
      value: 34.069
    - type: precision_at_1
      value: 28.374
    - type: precision_at_10
      value: 5.583
    - type: precision_at_100
      value: 0.8630000000000001
    - type: precision_at_1000
      value: 0.11299999999999999
    - type: precision_at_3
      value: 13.547999999999998
    - type: precision_at_5
      value: 9.447999999999999
    - type: recall_at_1
      value: 25.241999999999997
    - type: recall_at_10
      value: 45.711
    - type: recall_at_100
      value: 67.482
    - type: recall_at_1000
      value: 85.13300000000001
    - type: recall_at_3
      value: 34.622
    - type: recall_at_5
      value: 40.043
  - task:
      type: Retrieval
    dataset:
      type: BeIR/cqadupstack
      name: MTEB CQADupstackTexRetrieval
      config: default
      split: test
      revision: None
    metrics:
    - type: map_at_1
      value: 17.488999999999997
    - type: map_at_10
      value: 25.142999999999997
    - type: map_at_100
      value: 26.244
    - type: map_at_1000
      value: 26.363999999999997
    - type: map_at_3
      value: 22.654
    - type: map_at_5
      value: 24.017
    - type: mrr_at_1
      value: 21.198
    - type: mrr_at_10
      value: 28.903000000000002
    - type: mrr_at_100
      value: 29.860999999999997
    - type: mrr_at_1000
      value: 29.934
    - type: mrr_at_3
      value: 26.634999999999998
    - type: mrr_at_5
      value: 27.903
    - type: ndcg_at_1
      value: 21.198
    - type: ndcg_at_10
      value: 29.982999999999997
    - type: ndcg_at_100
      value: 35.275
    - type: ndcg_at_1000
      value: 38.074000000000005
    - type: ndcg_at_3
      value: 25.502999999999997
    - type: ndcg_at_5
      value: 27.557
    - type: precision_at_1
      value: 21.198
    - type: precision_at_10
      value: 5.502
    - type: precision_at_100
      value: 0.942
    - type: precision_at_1000
      value: 0.136
    - type: precision_at_3
      value: 12.044
    - type: precision_at_5
      value: 8.782
    - type: recall_at_1
      value: 17.488999999999997
    - type: recall_at_10
      value: 40.821000000000005
    - type: recall_at_100
      value: 64.567
    - type: recall_at_1000
      value: 84.452
    - type: recall_at_3
      value: 28.351
    - type: recall_at_5
      value: 33.645
  - task:
      type: Retrieval
    dataset:
      type: BeIR/cqadupstack
      name: MTEB CQADupstackUnixRetrieval
      config: default
      split: test
      revision: None
    metrics:
    - type: map_at_1
      value: 27.066000000000003
    - type: map_at_10
      value: 36.134
    - type: map_at_100
      value: 37.285000000000004
    - type: map_at_1000
      value: 37.389
    - type: map_at_3
      value: 33.522999999999996
    - type: map_at_5
      value: 34.905
    - type: mrr_at_1
      value: 31.436999999999998
    - type: mrr_at_10
      value: 40.225
    - type: mrr_at_100
      value: 41.079
    - type: mrr_at_1000
      value: 41.138000000000005
    - type: mrr_at_3
      value: 38.074999999999996
    - type: mrr_at_5
      value: 39.190000000000005
    - type: ndcg_at_1
      value: 31.436999999999998
    - type: ndcg_at_10
      value: 41.494
    - type: ndcg_at_100
      value: 46.678999999999995
    - type: ndcg_at_1000
      value: 48.964
    - type: ndcg_at_3
      value: 36.828
    - type: ndcg_at_5
      value: 38.789
    - type: precision_at_1
      value: 31.436999999999998
    - type: precision_at_10
      value: 6.931
    - type: precision_at_100
      value: 1.072
    - type: precision_at_1000
      value: 0.13799999999999998
    - type: precision_at_3
      value: 16.729
    - type: precision_at_5
      value: 11.567
    - type: recall_at_1
      value: 27.066000000000003
    - type: recall_at_10
      value: 53.705000000000005
    - type: recall_at_100
      value: 75.968
    - type: recall_at_1000
      value: 91.937
    - type: recall_at_3
      value: 40.865
    - type: recall_at_5
      value: 45.739999999999995
  - task:
      type: Retrieval
    dataset:
      type: BeIR/cqadupstack
      name: MTEB CQADupstackWebmastersRetrieval
      config: default
      split: test
      revision: None
    metrics:
    - type: map_at_1
      value: 24.979000000000003
    - type: map_at_10
      value: 32.799
    - type: map_at_100
      value: 34.508
    - type: map_at_1000
      value: 34.719
    - type: map_at_3
      value: 29.947000000000003
    - type: map_at_5
      value: 31.584
    - type: mrr_at_1
      value: 30.237000000000002
    - type: mrr_at_10
      value: 37.651
    - type: mrr_at_100
      value: 38.805
    - type: mrr_at_1000
      value: 38.851
    - type: mrr_at_3
      value: 35.046
    - type: mrr_at_5
      value: 36.548
    - type: ndcg_at_1
      value: 30.237000000000002
    - type: ndcg_at_10
      value: 38.356
    - type: ndcg_at_100
      value: 44.906
    - type: ndcg_at_1000
      value: 47.299
    - type: ndcg_at_3
      value: 33.717999999999996
    - type: ndcg_at_5
      value: 35.946
    - type: precision_at_1
      value: 30.237000000000002
    - type: precision_at_10
      value: 7.292
    - type: precision_at_100
      value: 1.496
    - type: precision_at_1000
      value: 0.23600000000000002
    - type: precision_at_3
      value: 15.547
    - type: precision_at_5
      value: 11.344
    - type: recall_at_1
      value: 24.979000000000003
    - type: recall_at_10
      value: 48.624
    - type: recall_at_100
      value: 77.932
    - type: recall_at_1000
      value: 92.66499999999999
    - type: recall_at_3
      value: 35.217
    - type: recall_at_5
      value: 41.394
  - task:
      type: Retrieval
    dataset:
      type: BeIR/cqadupstack
      name: MTEB CQADupstackWordpressRetrieval
      config: default
      split: test
      revision: None
    metrics:
    - type: map_at_1
      value: 22.566
    - type: map_at_10
      value: 30.945
    - type: map_at_100
      value: 31.759999999999998
    - type: map_at_1000
      value: 31.855
    - type: map_at_3
      value: 28.64
    - type: map_at_5
      value: 29.787000000000003
    - type: mrr_at_1
      value: 24.954
    - type: mrr_at_10
      value: 33.311
    - type: mrr_at_100
      value: 34.050000000000004
    - type: mrr_at_1000
      value: 34.117999999999995
    - type: mrr_at_3
      value: 31.238
    - type: mrr_at_5
      value: 32.329
    - type: ndcg_at_1
      value: 24.954
    - type: ndcg_at_10
      value: 35.676
    - type: ndcg_at_100
      value: 39.931
    - type: ndcg_at_1000
      value: 42.43
    - type: ndcg_at_3
      value: 31.365
    - type: ndcg_at_5
      value: 33.184999999999995
    - type: precision_at_1
      value: 24.954
    - type: precision_at_10
      value: 5.564
    - type: precision_at_100
      value: 0.826
    - type: precision_at_1000
      value: 0.116
    - type: precision_at_3
      value: 13.555
    - type: precision_at_5
      value: 9.168
    - type: recall_at_1
      value: 22.566
    - type: recall_at_10
      value: 47.922
    - type: recall_at_100
      value: 67.931
    - type: recall_at_1000
      value: 86.653
    - type: recall_at_3
      value: 36.103
    - type: recall_at_5
      value: 40.699000000000005
  - task:
      type: Retrieval
    dataset:
      type: climate-fever
      name: MTEB ClimateFEVER
      config: default
      split: test
      revision: None
    metrics:
    - type: map_at_1
      value: 16.950000000000003
    - type: map_at_10
      value: 28.612
    - type: map_at_100
      value: 30.476999999999997
    - type: map_at_1000
      value: 30.674
    - type: map_at_3
      value: 24.262
    - type: map_at_5
      value: 26.554
    - type: mrr_at_1
      value: 38.241
    - type: mrr_at_10
      value: 50.43
    - type: mrr_at_100
      value: 51.059
    - type: mrr_at_1000
      value: 51.090999999999994
    - type: mrr_at_3
      value: 47.514
    - type: mrr_at_5
      value: 49.246
    - type: ndcg_at_1
      value: 38.241
    - type: ndcg_at_10
      value: 38.218
    - type: ndcg_at_100
      value: 45.003
    - type: ndcg_at_1000
      value: 48.269
    - type: ndcg_at_3
      value: 32.568000000000005
    - type: ndcg_at_5
      value: 34.400999999999996
    - type: precision_at_1
      value: 38.241
    - type: precision_at_10
      value: 11.674
    - type: precision_at_100
      value: 1.913
    - type: precision_at_1000
      value: 0.252
    - type: precision_at_3
      value: 24.387
    - type: precision_at_5
      value: 18.163
    - type: recall_at_1
      value: 16.950000000000003
    - type: recall_at_10
      value: 43.769000000000005
    - type: recall_at_100
      value: 66.875
    - type: recall_at_1000
      value: 84.92699999999999
    - type: recall_at_3
      value: 29.353
    - type: recall_at_5
      value: 35.467
  - task:
      type: Retrieval
    dataset:
      type: dbpedia-entity
      name: MTEB DBPedia
      config: default
      split: test
      revision: None
    metrics:
    - type: map_at_1
      value: 9.276
    - type: map_at_10
      value: 20.848
    - type: map_at_100
      value: 29.804000000000002
    - type: map_at_1000
      value: 31.398
    - type: map_at_3
      value: 14.886
    - type: map_at_5
      value: 17.516000000000002
    - type: mrr_at_1
      value: 71
    - type: mrr_at_10
      value: 78.724
    - type: mrr_at_100
      value: 78.976
    - type: mrr_at_1000
      value: 78.986
    - type: mrr_at_3
      value: 77.333
    - type: mrr_at_5
      value: 78.021
    - type: ndcg_at_1
      value: 57.875
    - type: ndcg_at_10
      value: 43.855
    - type: ndcg_at_100
      value: 48.99
    - type: ndcg_at_1000
      value: 56.141
    - type: ndcg_at_3
      value: 48.914
    - type: ndcg_at_5
      value: 45.961
    - type: precision_at_1
      value: 71
    - type: precision_at_10
      value: 34.575
    - type: precision_at_100
      value: 11.182
    - type: precision_at_1000
      value: 2.044
    - type: precision_at_3
      value: 52.5
    - type: precision_at_5
      value: 44.2
    - type: recall_at_1
      value: 9.276
    - type: recall_at_10
      value: 26.501
    - type: recall_at_100
      value: 55.72899999999999
    - type: recall_at_1000
      value: 78.532
    - type: recall_at_3
      value: 16.365
    - type: recall_at_5
      value: 20.154
  - task:
      type: Classification
    dataset:
      type: mteb/emotion
      name: MTEB EmotionClassification
      config: default
      split: test
      revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
    metrics:
    - type: accuracy
      value: 52.71
    - type: f1
      value: 47.74801556489574
  - task:
      type: Retrieval
    dataset:
      type: fever
      name: MTEB FEVER
      config: default
      split: test
      revision: None
    metrics:
    - type: map_at_1
      value: 73.405
    - type: map_at_10
      value: 82.822
    - type: map_at_100
      value: 83.042
    - type: map_at_1000
      value: 83.055
    - type: map_at_3
      value: 81.65299999999999
    - type: map_at_5
      value: 82.431
    - type: mrr_at_1
      value: 79.178
    - type: mrr_at_10
      value: 87.02
    - type: mrr_at_100
      value: 87.095
    - type: mrr_at_1000
      value: 87.09700000000001
    - type: mrr_at_3
      value: 86.309
    - type: mrr_at_5
      value: 86.824
    - type: ndcg_at_1
      value: 79.178
    - type: ndcg_at_10
      value: 86.72
    - type: ndcg_at_100
      value: 87.457
    - type: ndcg_at_1000
      value: 87.691
    - type: ndcg_at_3
      value: 84.974
    - type: ndcg_at_5
      value: 86.032
    - type: precision_at_1
      value: 79.178
    - type: precision_at_10
      value: 10.548
    - type: precision_at_100
      value: 1.113
    - type: precision_at_1000
      value: 0.11499999999999999
    - type: precision_at_3
      value: 32.848
    - type: precision_at_5
      value: 20.45
    - type: recall_at_1
      value: 73.405
    - type: recall_at_10
      value: 94.39699999999999
    - type: recall_at_100
      value: 97.219
    - type: recall_at_1000
      value: 98.675
    - type: recall_at_3
      value: 89.679
    - type: recall_at_5
      value: 92.392
  - task:
      type: Retrieval
    dataset:
      type: fiqa
      name: MTEB FiQA2018
      config: default
      split: test
      revision: None
    metrics:
    - type: map_at_1
      value: 22.651
    - type: map_at_10
      value: 36.886
    - type: map_at_100
      value: 38.811
    - type: map_at_1000
      value: 38.981
    - type: map_at_3
      value: 32.538
    - type: map_at_5
      value: 34.763
    - type: mrr_at_1
      value: 44.444
    - type: mrr_at_10
      value: 53.168000000000006
    - type: mrr_at_100
      value: 53.839000000000006
    - type: mrr_at_1000
      value: 53.869
    - type: mrr_at_3
      value: 50.54
    - type: mrr_at_5
      value: 52.068000000000005
    - type: ndcg_at_1
      value: 44.444
    - type: ndcg_at_10
      value: 44.994
    - type: ndcg_at_100
      value: 51.599
    - type: ndcg_at_1000
      value: 54.339999999999996
    - type: ndcg_at_3
      value: 41.372
    - type: ndcg_at_5
      value: 42.149
    - type: precision_at_1
      value: 44.444
    - type: precision_at_10
      value: 12.407
    - type: precision_at_100
      value: 1.9269999999999998
    - type: precision_at_1000
      value: 0.242
    - type: precision_at_3
      value: 27.726
    - type: precision_at_5
      value: 19.814999999999998
    - type: recall_at_1
      value: 22.651
    - type: recall_at_10
      value: 52.075
    - type: recall_at_100
      value: 76.51400000000001
    - type: recall_at_1000
      value: 92.852
    - type: recall_at_3
      value: 37.236000000000004
    - type: recall_at_5
      value: 43.175999999999995
  - task:
      type: Retrieval
    dataset:
      type: hotpotqa
      name: MTEB HotpotQA
      config: default
      split: test
      revision: None
    metrics:
    - type: map_at_1
      value: 40.777
    - type: map_at_10
      value: 66.79899999999999
    - type: map_at_100
      value: 67.65299999999999
    - type: map_at_1000
      value: 67.706
    - type: map_at_3
      value: 63.352
    - type: map_at_5
      value: 65.52900000000001
    - type: mrr_at_1
      value: 81.553
    - type: mrr_at_10
      value: 86.983
    - type: mrr_at_100
      value: 87.132
    - type: mrr_at_1000
      value: 87.136
    - type: mrr_at_3
      value: 86.156
    - type: mrr_at_5
      value: 86.726
    - type: ndcg_at_1
      value: 81.553
    - type: ndcg_at_10
      value: 74.64
    - type: ndcg_at_100
      value: 77.459
    - type: ndcg_at_1000
      value: 78.43
    - type: ndcg_at_3
      value: 69.878
    - type: ndcg_at_5
      value: 72.59400000000001
    - type: precision_at_1
      value: 81.553
    - type: precision_at_10
      value: 15.654000000000002
    - type: precision_at_100
      value: 1.783
    - type: precision_at_1000
      value: 0.191
    - type: precision_at_3
      value: 45.199
    - type: precision_at_5
      value: 29.267
    - type: recall_at_1
      value: 40.777
    - type: recall_at_10
      value: 78.271
    - type: recall_at_100
      value: 89.129
    - type: recall_at_1000
      value: 95.49
    - type: recall_at_3
      value: 67.79899999999999
    - type: recall_at_5
      value: 73.167
  - task:
      type: Classification
    dataset:
      type: mteb/imdb
      name: MTEB ImdbClassification
      config: default
      split: test
      revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
    metrics:
    - type: accuracy
      value: 93.5064
    - type: ap
      value: 90.25495114444111
    - type: f1
      value: 93.5012434973381
  - task:
      type: Retrieval
    dataset:
      type: msmarco
      name: MTEB MSMARCO
      config: default
      split: dev
      revision: None
    metrics:
    - type: map_at_1
      value: 23.301
    - type: map_at_10
      value: 35.657
    - type: map_at_100
      value: 36.797000000000004
    - type: map_at_1000
      value: 36.844
    - type: map_at_3
      value: 31.743
    - type: map_at_5
      value: 34.003
    - type: mrr_at_1
      value: 23.854
    - type: mrr_at_10
      value: 36.242999999999995
    - type: mrr_at_100
      value: 37.32
    - type: mrr_at_1000
      value: 37.361
    - type: mrr_at_3
      value: 32.4
    - type: mrr_at_5
      value: 34.634
    - type: ndcg_at_1
      value: 23.868000000000002
    - type: ndcg_at_10
      value: 42.589
    - type: ndcg_at_100
      value: 48.031
    - type: ndcg_at_1000
      value: 49.189
    - type: ndcg_at_3
      value: 34.649
    - type: ndcg_at_5
      value: 38.676
    - type: precision_at_1
      value: 23.868000000000002
    - type: precision_at_10
      value: 6.6850000000000005
    - type: precision_at_100
      value: 0.9400000000000001
    - type: precision_at_1000
      value: 0.104
    - type: precision_at_3
      value: 14.651
    - type: precision_at_5
      value: 10.834000000000001
    - type: recall_at_1
      value: 23.301
    - type: recall_at_10
      value: 63.88700000000001
    - type: recall_at_100
      value: 88.947
    - type: recall_at_1000
      value: 97.783
    - type: recall_at_3
      value: 42.393
    - type: recall_at_5
      value: 52.036
  - task:
      type: Classification
    dataset:
      type: mteb/mtop_domain
      name: MTEB MTOPDomainClassification (en)
      config: en
      split: test
      revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
    metrics:
    - type: accuracy
      value: 94.64888280893753
    - type: f1
      value: 94.41310774203512
  - task:
      type: Classification
    dataset:
      type: mteb/mtop_intent
      name: MTEB MTOPIntentClassification (en)
      config: en
      split: test
      revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
    metrics:
    - type: accuracy
      value: 79.72184222526221
    - type: f1
      value: 61.522034067350106
  - task:
      type: Classification
    dataset:
      type: mteb/amazon_massive_intent
      name: MTEB MassiveIntentClassification (en)
      config: en
      split: test
      revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
    metrics:
    - type: accuracy
      value: 79.60659045057163
    - type: f1
      value: 77.268649687049
  - task:
      type: Classification
    dataset:
      type: mteb/amazon_massive_scenario
      name: MTEB MassiveScenarioClassification (en)
      config: en
      split: test
      revision: 7d571f92784cd94a019292a1f45445077d0ef634
    metrics:
    - type: accuracy
      value: 81.83254875588432
    - type: f1
      value: 81.61520635919082
  - task:
      type: Clustering
    dataset:
      type: mteb/medrxiv-clustering-p2p
      name: MTEB MedrxivClusteringP2P
      config: default
      split: test
      revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
    metrics:
    - type: v_measure
      value: 36.31529875009507
  - task:
      type: Clustering
    dataset:
      type: mteb/medrxiv-clustering-s2s
      name: MTEB MedrxivClusteringS2S
      config: default
      split: test
      revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
    metrics:
    - type: v_measure
      value: 31.734233714415073
  - task:
      type: Reranking
    dataset:
      type: mteb/mind_small
      name: MTEB MindSmallReranking
      config: default
      split: test
      revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
    metrics:
    - type: map
      value: 30.994501713009452
    - type: mrr
      value: 32.13512850703073
  - task:
      type: Retrieval
    dataset:
      type: nfcorpus
      name: MTEB NFCorpus
      config: default
      split: test
      revision: None
    metrics:
    - type: map_at_1
      value: 6.603000000000001
    - type: map_at_10
      value: 13.767999999999999
    - type: map_at_100
      value: 17.197000000000003
    - type: map_at_1000
      value: 18.615000000000002
    - type: map_at_3
      value: 10.567
    - type: map_at_5
      value: 12.078999999999999
    - type: mrr_at_1
      value: 44.891999999999996
    - type: mrr_at_10
      value: 53.75299999999999
    - type: mrr_at_100
      value: 54.35
    - type: mrr_at_1000
      value: 54.388000000000005
    - type: mrr_at_3
      value: 51.495999999999995
    - type: mrr_at_5
      value: 52.688
    - type: ndcg_at_1
      value: 43.189
    - type: ndcg_at_10
      value: 34.567
    - type: ndcg_at_100
      value: 32.273
    - type: ndcg_at_1000
      value: 41.321999999999996
    - type: ndcg_at_3
      value: 40.171
    - type: ndcg_at_5
      value: 37.502
    - type: precision_at_1
      value: 44.582
    - type: precision_at_10
      value: 25.139
    - type: precision_at_100
      value: 7.739999999999999
    - type: precision_at_1000
      value: 2.054
    - type: precision_at_3
      value: 37.152
    - type: precision_at_5
      value: 31.826999999999998
    - type: recall_at_1
      value: 6.603000000000001
    - type: recall_at_10
      value: 17.023
    - type: recall_at_100
      value: 32.914
    - type: recall_at_1000
      value: 64.44800000000001
    - type: recall_at_3
      value: 11.457
    - type: recall_at_5
      value: 13.816
  - task:
      type: Retrieval
    dataset:
      type: nq
      name: MTEB NQ
      config: default
      split: test
      revision: None
    metrics:
    - type: map_at_1
      value: 30.026000000000003
    - type: map_at_10
      value: 45.429
    - type: map_at_100
      value: 46.45
    - type: map_at_1000
      value: 46.478
    - type: map_at_3
      value: 41.147
    - type: map_at_5
      value: 43.627
    - type: mrr_at_1
      value: 33.951
    - type: mrr_at_10
      value: 47.953
    - type: mrr_at_100
      value: 48.731
    - type: mrr_at_1000
      value: 48.751
    - type: mrr_at_3
      value: 44.39
    - type: mrr_at_5
      value: 46.533
    - type: ndcg_at_1
      value: 33.951
    - type: ndcg_at_10
      value: 53.24100000000001
    - type: ndcg_at_100
      value: 57.599999999999994
    - type: ndcg_at_1000
      value: 58.270999999999994
    - type: ndcg_at_3
      value: 45.190999999999995
    - type: ndcg_at_5
      value: 49.339
    - type: precision_at_1
      value: 33.951
    - type: precision_at_10
      value: 8.856
    - type: precision_at_100
      value: 1.133
    - type: precision_at_1000
      value: 0.12
    - type: precision_at_3
      value: 20.713
    - type: precision_at_5
      value: 14.838000000000001
    - type: recall_at_1
      value: 30.026000000000003
    - type: recall_at_10
      value: 74.512
    - type: recall_at_100
      value: 93.395
    - type: recall_at_1000
      value: 98.402
    - type: recall_at_3
      value: 53.677
    - type: recall_at_5
      value: 63.198
  - task:
      type: Retrieval
    dataset:
      type: quora
      name: MTEB QuoraRetrieval
      config: default
      split: test
      revision: None
    metrics:
    - type: map_at_1
      value: 71.41300000000001
    - type: map_at_10
      value: 85.387
    - type: map_at_100
      value: 86.027
    - type: map_at_1000
      value: 86.041
    - type: map_at_3
      value: 82.543
    - type: map_at_5
      value: 84.304
    - type: mrr_at_1
      value: 82.35
    - type: mrr_at_10
      value: 88.248
    - type: mrr_at_100
      value: 88.348
    - type: mrr_at_1000
      value: 88.349
    - type: mrr_at_3
      value: 87.348
    - type: mrr_at_5
      value: 87.96300000000001
    - type: ndcg_at_1
      value: 82.37
    - type: ndcg_at_10
      value: 88.98
    - type: ndcg_at_100
      value: 90.16499999999999
    - type: ndcg_at_1000
      value: 90.239
    - type: ndcg_at_3
      value: 86.34100000000001
    - type: ndcg_at_5
      value: 87.761
    - type: precision_at_1
      value: 82.37
    - type: precision_at_10
      value: 13.471
    - type: precision_at_100
      value: 1.534
    - type: precision_at_1000
      value: 0.157
    - type: precision_at_3
      value: 37.827
    - type: precision_at_5
      value: 24.773999999999997
    - type: recall_at_1
      value: 71.41300000000001
    - type: recall_at_10
      value: 95.748
    - type: recall_at_100
      value: 99.69200000000001
    - type: recall_at_1000
      value: 99.98
    - type: recall_at_3
      value: 87.996
    - type: recall_at_5
      value: 92.142
  - task:
      type: Clustering
    dataset:
      type: mteb/reddit-clustering
      name: MTEB RedditClustering
      config: default
      split: test
      revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
    metrics:
    - type: v_measure
      value: 56.96878497780007
  - task:
      type: Clustering
    dataset:
      type: mteb/reddit-clustering-p2p
      name: MTEB RedditClusteringP2P
      config: default
      split: test
      revision: 282350215ef01743dc01b456c7f5241fa8937f16
    metrics:
    - type: v_measure
      value: 65.31371347128074
  - task:
      type: Retrieval
    dataset:
      type: scidocs
      name: MTEB SCIDOCS
      config: default
      split: test
      revision: None
    metrics:
    - type: map_at_1
      value: 5.287
    - type: map_at_10
      value: 13.530000000000001
    - type: map_at_100
      value: 15.891
    - type: map_at_1000
      value: 16.245
    - type: map_at_3
      value: 9.612
    - type: map_at_5
      value: 11.672
    - type: mrr_at_1
      value: 26
    - type: mrr_at_10
      value: 37.335
    - type: mrr_at_100
      value: 38.443
    - type: mrr_at_1000
      value: 38.486
    - type: mrr_at_3
      value: 33.783
    - type: mrr_at_5
      value: 36.028
    - type: ndcg_at_1
      value: 26
    - type: ndcg_at_10
      value: 22.215
    - type: ndcg_at_100
      value: 31.101
    - type: ndcg_at_1000
      value: 36.809
    - type: ndcg_at_3
      value: 21.104
    - type: ndcg_at_5
      value: 18.759999999999998
    - type: precision_at_1
      value: 26
    - type: precision_at_10
      value: 11.43
    - type: precision_at_100
      value: 2.424
    - type: precision_at_1000
      value: 0.379
    - type: precision_at_3
      value: 19.7
    - type: precision_at_5
      value: 16.619999999999997
    - type: recall_at_1
      value: 5.287
    - type: recall_at_10
      value: 23.18
    - type: recall_at_100
      value: 49.208
    - type: recall_at_1000
      value: 76.85300000000001
    - type: recall_at_3
      value: 11.991999999999999
    - type: recall_at_5
      value: 16.85
  - task:
      type: STS
    dataset:
      type: mteb/sickr-sts
      name: MTEB SICK-R
      config: default
      split: test
      revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
    metrics:
    - type: cos_sim_pearson
      value: 83.87834913790886
    - type: cos_sim_spearman
      value: 81.04583513112122
    - type: euclidean_pearson
      value: 81.20484174558065
    - type: euclidean_spearman
      value: 80.76430832561769
    - type: manhattan_pearson
      value: 81.21416730978615
    - type: manhattan_spearman
      value: 80.7797637394211
  - task:
      type: STS
    dataset:
      type: mteb/sts12-sts
      name: MTEB STS12
      config: default
      split: test
      revision: a0d554a64d88156834ff5ae9920b964011b16384
    metrics:
    - type: cos_sim_pearson
      value: 86.56143998865157
    - type: cos_sim_spearman
      value: 79.75387012744471
    - type: euclidean_pearson
      value: 83.7877519997019
    - type: euclidean_spearman
      value: 79.90489748003296
    - type: manhattan_pearson
      value: 83.7540590666095
    - type: manhattan_spearman
      value: 79.86434577931573
  - task:
      type: STS
    dataset:
      type: mteb/sts13-sts
      name: MTEB STS13
      config: default
      split: test
      revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
    metrics:
    - type: cos_sim_pearson
      value: 83.92102564177941
    - type: cos_sim_spearman
      value: 84.98234585939103
    - type: euclidean_pearson
      value: 84.47729567593696
    - type: euclidean_spearman
      value: 85.09490696194469
    - type: manhattan_pearson
      value: 84.38622951588229
    - type: manhattan_spearman
      value: 85.02507171545574
  - task:
      type: STS
    dataset:
      type: mteb/sts14-sts
      name: MTEB STS14
      config: default
      split: test
      revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
    metrics:
    - type: cos_sim_pearson
      value: 80.1891164763377
    - type: cos_sim_spearman
      value: 80.7997969966883
    - type: euclidean_pearson
      value: 80.48572256162396
    - type: euclidean_spearman
      value: 80.57851903536378
    - type: manhattan_pearson
      value: 80.4324819433651
    - type: manhattan_spearman
      value: 80.5074526239062
  - task:
      type: STS
    dataset:
      type: mteb/sts15-sts
      name: MTEB STS15
      config: default
      split: test
      revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
    metrics:
    - type: cos_sim_pearson
      value: 82.64319975116025
    - type: cos_sim_spearman
      value: 84.88671197763652
    - type: euclidean_pearson
      value: 84.74692193293231
    - type: euclidean_spearman
      value: 85.27151722073653
    - type: manhattan_pearson
      value: 84.72460516785438
    - type: manhattan_spearman
      value: 85.26518899786687
  - task:
      type: STS
    dataset:
      type: mteb/sts16-sts
      name: MTEB STS16
      config: default
      split: test
      revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
    metrics:
    - type: cos_sim_pearson
      value: 83.24687565822381
    - type: cos_sim_spearman
      value: 85.60418454111263
    - type: euclidean_pearson
      value: 84.85829740169851
    - type: euclidean_spearman
      value: 85.66378014138306
    - type: manhattan_pearson
      value: 84.84672408808835
    - type: manhattan_spearman
      value: 85.63331924364891
  - task:
      type: STS
    dataset:
      type: mteb/sts17-crosslingual-sts
      name: MTEB STS17 (en-en)
      config: en-en
      split: test
      revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
    metrics:
    - type: cos_sim_pearson
      value: 84.87758895415485
    - type: cos_sim_spearman
      value: 85.8193745617297
    - type: euclidean_pearson
      value: 85.78719118848134
    - type: euclidean_spearman
      value: 84.35797575385688
    - type: manhattan_pearson
      value: 85.97919844815692
    - type: manhattan_spearman
      value: 84.58334745175151
  - task:
      type: STS
    dataset:
      type: mteb/sts22-crosslingual-sts
      name: MTEB STS22 (en)
      config: en
      split: test
      revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
    metrics:
    - type: cos_sim_pearson
      value: 67.27076035963599
    - type: cos_sim_spearman
      value: 67.21433656439973
    - type: euclidean_pearson
      value: 68.07434078679324
    - type: euclidean_spearman
      value: 66.0249731719049
    - type: manhattan_pearson
      value: 67.95495198947476
    - type: manhattan_spearman
      value: 65.99893908331886
  - task:
      type: STS
    dataset:
      type: mteb/stsbenchmark-sts
      name: MTEB STSBenchmark
      config: default
      split: test
      revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
    metrics:
    - type: cos_sim_pearson
      value: 82.22437747056817
    - type: cos_sim_spearman
      value: 85.0995685206174
    - type: euclidean_pearson
      value: 84.08616925603394
    - type: euclidean_spearman
      value: 84.89633925691658
    - type: manhattan_pearson
      value: 84.08332675923133
    - type: manhattan_spearman
      value: 84.8858228112915
  - task:
      type: Reranking
    dataset:
      type: mteb/scidocs-reranking
      name: MTEB SciDocsRR
      config: default
      split: test
      revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
    metrics:
    - type: map
      value: 87.6909022589666
    - type: mrr
      value: 96.43341952165481
  - task:
      type: Retrieval
    dataset:
      type: scifact
      name: MTEB SciFact
      config: default
      split: test
      revision: None
    metrics:
    - type: map_at_1
      value: 57.660999999999994
    - type: map_at_10
      value: 67.625
    - type: map_at_100
      value: 68.07600000000001
    - type: map_at_1000
      value: 68.10199999999999
    - type: map_at_3
      value: 64.50399999999999
    - type: map_at_5
      value: 66.281
    - type: mrr_at_1
      value: 61
    - type: mrr_at_10
      value: 68.953
    - type: mrr_at_100
      value: 69.327
    - type: mrr_at_1000
      value: 69.352
    - type: mrr_at_3
      value: 66.833
    - type: mrr_at_5
      value: 68.05
    - type: ndcg_at_1
      value: 61
    - type: ndcg_at_10
      value: 72.369
    - type: ndcg_at_100
      value: 74.237
    - type: ndcg_at_1000
      value: 74.939
    - type: ndcg_at_3
      value: 67.284
    - type: ndcg_at_5
      value: 69.72500000000001
    - type: precision_at_1
      value: 61
    - type: precision_at_10
      value: 9.733
    - type: precision_at_100
      value: 1.0670000000000002
    - type: precision_at_1000
      value: 0.11199999999999999
    - type: precision_at_3
      value: 26.222
    - type: precision_at_5
      value: 17.4
    - type: recall_at_1
      value: 57.660999999999994
    - type: recall_at_10
      value: 85.656
    - type: recall_at_100
      value: 93.833
    - type: recall_at_1000
      value: 99.333
    - type: recall_at_3
      value: 71.961
    - type: recall_at_5
      value: 78.094
  - task:
      type: PairClassification
    dataset:
      type: mteb/sprintduplicatequestions-pairclassification
      name: MTEB SprintDuplicateQuestions
      config: default
      split: test
      revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
    metrics:
    - type: cos_sim_accuracy
      value: 99.86930693069307
    - type: cos_sim_ap
      value: 96.76685487950894
    - type: cos_sim_f1
      value: 93.44587884806354
    - type: cos_sim_precision
      value: 92.80078895463511
    - type: cos_sim_recall
      value: 94.1
    - type: dot_accuracy
      value: 99.54356435643564
    - type: dot_ap
      value: 81.18659960405607
    - type: dot_f1
      value: 75.78008915304605
    - type: dot_precision
      value: 75.07360157016683
    - type: dot_recall
      value: 76.5
    - type: euclidean_accuracy
      value: 99.87326732673267
    - type: euclidean_ap
      value: 96.8102411908941
    - type: euclidean_f1
      value: 93.6127744510978
    - type: euclidean_precision
      value: 93.42629482071713
    - type: euclidean_recall
      value: 93.8
    - type: manhattan_accuracy
      value: 99.87425742574257
    - type: manhattan_ap
      value: 96.82857341435529
    - type: manhattan_f1
      value: 93.62129583124059
    - type: manhattan_precision
      value: 94.04641775983855
    - type: manhattan_recall
      value: 93.2
    - type: max_accuracy
      value: 99.87425742574257
    - type: max_ap
      value: 96.82857341435529
    - type: max_f1
      value: 93.62129583124059
  - task:
      type: Clustering
    dataset:
      type: mteb/stackexchange-clustering
      name: MTEB StackExchangeClustering
      config: default
      split: test
      revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
    metrics:
    - type: v_measure
      value: 65.92560972698926
  - task:
      type: Clustering
    dataset:
      type: mteb/stackexchange-clustering-p2p
      name: MTEB StackExchangeClusteringP2P
      config: default
      split: test
      revision: 815ca46b2622cec33ccafc3735d572c266efdb44
    metrics:
    - type: v_measure
      value: 34.92797240259008
  - task:
      type: Reranking
    dataset:
      type: mteb/stackoverflowdupquestions-reranking
      name: MTEB StackOverflowDupQuestions
      config: default
      split: test
      revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
    metrics:
    - type: map
      value: 55.244624045597654
    - type: mrr
      value: 56.185303666921314
  - task:
      type: Summarization
    dataset:
      type: mteb/summeval
      name: MTEB SummEval
      config: default
      split: test
      revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
    metrics:
    - type: cos_sim_pearson
      value: 31.02491987312937
    - type: cos_sim_spearman
      value: 32.055592206679734
    - type: dot_pearson
      value: 24.731627575422557
    - type: dot_spearman
      value: 24.308029077069733
  - task:
      type: Retrieval
    dataset:
      type: trec-covid
      name: MTEB TRECCOVID
      config: default
      split: test
      revision: None
    metrics:
    - type: map_at_1
      value: 0.231
    - type: map_at_10
      value: 1.899
    - type: map_at_100
      value: 9.498
    - type: map_at_1000
      value: 20.979999999999997
    - type: map_at_3
      value: 0.652
    - type: map_at_5
      value: 1.069
    - type: mrr_at_1
      value: 88
    - type: mrr_at_10
      value: 93.4
    - type: mrr_at_100
      value: 93.4
    - type: mrr_at_1000
      value: 93.4
    - type: mrr_at_3
      value: 93
    - type: mrr_at_5
      value: 93.4
    - type: ndcg_at_1
      value: 86
    - type: ndcg_at_10
      value: 75.375
    - type: ndcg_at_100
      value: 52.891999999999996
    - type: ndcg_at_1000
      value: 44.952999999999996
    - type: ndcg_at_3
      value: 81.05
    - type: ndcg_at_5
      value: 80.175
    - type: precision_at_1
      value: 88
    - type: precision_at_10
      value: 79
    - type: precision_at_100
      value: 53.16
    - type: precision_at_1000
      value: 19.408
    - type: precision_at_3
      value: 85.333
    - type: precision_at_5
      value: 84
    - type: recall_at_1
      value: 0.231
    - type: recall_at_10
      value: 2.078
    - type: recall_at_100
      value: 12.601
    - type: recall_at_1000
      value: 41.296
    - type: recall_at_3
      value: 0.6779999999999999
    - type: recall_at_5
      value: 1.1360000000000001
  - task:
      type: Retrieval
    dataset:
      type: webis-touche2020
      name: MTEB Touche2020
      config: default
      split: test
      revision: None
    metrics:
    - type: map_at_1
      value: 2.782
    - type: map_at_10
      value: 10.204
    - type: map_at_100
      value: 16.176
    - type: map_at_1000
      value: 17.456
    - type: map_at_3
      value: 5.354
    - type: map_at_5
      value: 7.503
    - type: mrr_at_1
      value: 40.816
    - type: mrr_at_10
      value: 54.010000000000005
    - type: mrr_at_100
      value: 54.49
    - type: mrr_at_1000
      value: 54.49
    - type: mrr_at_3
      value: 48.980000000000004
    - type: mrr_at_5
      value: 51.735
    - type: ndcg_at_1
      value: 36.735
    - type: ndcg_at_10
      value: 26.61
    - type: ndcg_at_100
      value: 36.967
    - type: ndcg_at_1000
      value: 47.274
    - type: ndcg_at_3
      value: 30.363
    - type: ndcg_at_5
      value: 29.448999999999998
    - type: precision_at_1
      value: 40.816
    - type: precision_at_10
      value: 23.878
    - type: precision_at_100
      value: 7.693999999999999
    - type: precision_at_1000
      value: 1.4489999999999998
    - type: precision_at_3
      value: 31.293
    - type: precision_at_5
      value: 29.796
    - type: recall_at_1
      value: 2.782
    - type: recall_at_10
      value: 16.485
    - type: recall_at_100
      value: 46.924
    - type: recall_at_1000
      value: 79.365
    - type: recall_at_3
      value: 6.52
    - type: recall_at_5
      value: 10.48
  - task:
      type: Classification
    dataset:
      type: mteb/toxic_conversations_50k
      name: MTEB ToxicConversationsClassification
      config: default
      split: test
      revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
    metrics:
    - type: accuracy
      value: 70.08300000000001
    - type: ap
      value: 13.91559884590195
    - type: f1
      value: 53.956838444291364
  - task:
      type: Classification
    dataset:
      type: mteb/tweet_sentiment_extraction
      name: MTEB TweetSentimentExtractionClassification
      config: default
      split: test
      revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
    metrics:
    - type: accuracy
      value: 59.34069043576683
    - type: f1
      value: 59.662041994618406
  - task:
      type: Clustering
    dataset:
      type: mteb/twentynewsgroups-clustering
      name: MTEB TwentyNewsgroupsClustering
      config: default
      split: test
      revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
    metrics:
    - type: v_measure
      value: 53.70780611078653
  - task:
      type: PairClassification
    dataset:
      type: mteb/twittersemeval2015-pairclassification
      name: MTEB TwitterSemEval2015
      config: default
      split: test
      revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
    metrics:
    - type: cos_sim_accuracy
      value: 87.10734934732073
    - type: cos_sim_ap
      value: 77.58349999516054
    - type: cos_sim_f1
      value: 70.25391395868965
    - type: cos_sim_precision
      value: 70.06035161374967
    - type: cos_sim_recall
      value: 70.44854881266491
    - type: dot_accuracy
      value: 80.60439887941826
    - type: dot_ap
      value: 54.52935200483575
    - type: dot_f1
      value: 54.170444242973716
    - type: dot_precision
      value: 47.47715534366309
    - type: dot_recall
      value: 63.06068601583114
    - type: euclidean_accuracy
      value: 87.26828396018358
    - type: euclidean_ap
      value: 78.00158454104036
    - type: euclidean_f1
      value: 70.70292457670601
    - type: euclidean_precision
      value: 68.79680479281079
    - type: euclidean_recall
      value: 72.71767810026385
    - type: manhattan_accuracy
      value: 87.11330988853788
    - type: manhattan_ap
      value: 77.92527099601855
    - type: manhattan_f1
      value: 70.76488706365502
    - type: manhattan_precision
      value: 68.89055472263868
    - type: manhattan_recall
      value: 72.74406332453826
    - type: max_accuracy
      value: 87.26828396018358
    - type: max_ap
      value: 78.00158454104036
    - type: max_f1
      value: 70.76488706365502
  - task:
      type: PairClassification
    dataset:
      type: mteb/twitterurlcorpus-pairclassification
      name: MTEB TwitterURLCorpus
      config: default
      split: test
      revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
    metrics:
    - type: cos_sim_accuracy
      value: 87.80804905499282
    - type: cos_sim_ap
      value: 83.06187782630936
    - type: cos_sim_f1
      value: 74.99716435403985
    - type: cos_sim_precision
      value: 73.67951860931579
    - type: cos_sim_recall
      value: 76.36279642747151
    - type: dot_accuracy
      value: 81.83141227151008
    - type: dot_ap
      value: 67.18241090841795
    - type: dot_f1
      value: 62.216037571751606
    - type: dot_precision
      value: 56.749381227391005
    - type: dot_recall
      value: 68.84816753926701
    - type: euclidean_accuracy
      value: 87.91671517832887
    - type: euclidean_ap
      value: 83.56538942001427
    - type: euclidean_f1
      value: 75.7327253337256
    - type: euclidean_precision
      value: 72.48856036606828
    - type: euclidean_recall
      value: 79.28087465352634
    - type: manhattan_accuracy
      value: 87.86626304963713
    - type: manhattan_ap
      value: 83.52939841172832
    - type: manhattan_f1
      value: 75.73635656329888
    - type: manhattan_precision
      value: 72.99150182103836
    - type: manhattan_recall
      value: 78.69571912534647
    - type: max_accuracy
      value: 87.91671517832887
    - type: max_ap
      value: 83.56538942001427
    - type: max_f1
      value: 75.73635656329888
license: mit
language:
- en